1	Biological Nitrogen Removal through Nitritation Coupled with				
2	Thiosulfate-Driven Denitritation				
3					
4	(Supplementary Information)				
5					
6	Jin Qian ^{1,2} , Junmei Zhou ^{1,2} , Zhen Zhang ^{2,3*} , Rulong Liu ² , Qilin Wang ^{4*}				
7					
8	¹ School of Architecture and Civil Engineering, Chengdu University, Sichuan 610106,				
9	China				
10	² Department of Civil and Environmental Engineering, The Hong Kong University of				
11	Science and Technology, Clear Water Bay, Kowloon, Hong Kong 00852, China				
12	³ State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and				
13	Gas Pollution Control, China University of Petroleum, Beijing 102249, China				
14	⁴ Advanced Water Management Centre (AWMC), The University of Queensland, QLD				
15	4072, Brisbane, Australia				
16					
17	Correspondence and requests for materials should be addressed to				
18	Q.W. (email: q.wang@awmc.uq.edu.au) and				
19	Z.Z. (email: zhangzhen_23102@163.com).				
20					

Table S1. Composition of stock nutrient solution for both nitrifying sludge^a and AnUSB reactor.

Component	Concentration (g/L)	Component	Concentration (g/L)
NH ₄ Cl	18.45	FeCl ₃ ·6H ₂ O	2
K ₂ HPO ₄	1.92	H_3BO_3	0.2
KH ₂ PO ₄	0.72	CuSO ₄	0.05
$MgCl_2 \cdot 6H_2O$	8.32	KI	0.08
$CaCl_2$	5.2	MnSO ₄ ·4H ₂ O	0.25
NaHCO ₃	62.4	$ZnSO_4 \cdot 7H_2O$	0.15
		CoCl ₂ ·6H ₂ O	0.2

^aOrganic carbon (as glucose) was additionally dosed to the nitrifying sludge, resulting

Table S2. Conditions for the nitrifying sludge cultivation.

Effective reactor volume (L)	2.4
Exchange ratio	0.5
Temperature (°C)	23 ± 1
pН	7.5~8.0
HRT (hrs)	8
DO concentration (mg/L)	2~3
Influent NH ₄ ⁺ concentration (mg N/L)	240
Influent COD concentration (mg COD/L)	480
MLVSS concentration (mg/L)	3200

in an influent COD concentration of 480 mg COD/L.

Table S3. Conditions (i.e. pH, initial NO_2^- and $S_2O_3^{2-}$ concentrations) for the 8 batch reactors and 8 control reactors (without $S_2O_3^{2-}$ as the electron donor) in Batch Test II – biomass-specific denitritation activities under different initial NO_2^- concentrations, pH and FNA concentrations.

		рН	NO ₂ conc. (mg N/L)	$S_2O_3^{2-}$ conc. (mg S/L)
	1	7.5	30	
	2	7.5	60	
	3	7.5	90	
Batch	4	7.5	120	360
Reactors	5	6.0	60	300
	6	7.0	60	
	7	8.0	60	
	8	9.0	60	
	1	7.5	30	
	2	7.5	60	
	3	7.5	90	
Control	4	7.5	120	0
Reactors	5	6.0	60	0
	6	7.0	60	
	7	8.0	60	
	8	9.0	60	

Table S4. Primer of the DNA amplification for NSBR and AnUSB reactor at the beginning and end of operation.

Barcode Sequence	Primer
	(V1-V3)
ATGCTACGTC	8F: 5'-AGAGTTTGATCCTGGCTCAG-3'
	533R: 5'-TTACCGCGGCTGCTGGCAC-3'

Figure S1. Batch Test II results - biomass-specific denitritation activities under different initial NO₂⁻ concentrations, pH and FNA concentrations: (a) Profile of nitrite for Batch Reactors 1 to 4 (under different initial NO₂⁻ concentrations) in Batch Test II; (b) Profile of nitrite for Batch Reactors 5 to 8 (under different pH) in Batch Test II; (c) relationship between NO₂⁻ reduction rates and initial FNA concentrations in each reactor of Batch Test II.